# Infinity \/\/FREE\\\\

Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol[1] and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli)[2] regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done.[1] At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes.[1][3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers.[4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.

## infinity

Ancient cultures had various ideas about the nature of infinity. The ancient Indians and the Greeks did not define infinity in precise formalism as does modern mathematics, and instead approached infinity as a philosophical concept.

Aristotle (350 BC) distinguished potential infinity from actual infinity, which he regarded as impossible due to the various paradoxes it seemed to produce.[7] It has been argued that, in line with this view, the Hellenistic Greeks had a "horror of the infinite"[8][9] which would, for example, explain why Euclid (c. 300 BC) did not say that there are an infinity of primes but rather "Prime numbers are more than any assigned multitude of prime numbers."[10] It has also been maintained, that, in proving the infinitude of the prime numbers, Euclid "was the first to overcome the horror of the infinite".[11] There is a similar controversy concerning Euclid's parallel postulate, sometimes translated:

If a straight line falling across two [other] straight lines makes internal angles on the same side [of itself whose sum is] less than two right angles, then the two [other] straight lines, being produced to infinity, meet on that side [of the original straight line] that the [sum of the internal angles] is less than two right angles.[12]

Other translators, however, prefer the translation "the two straight lines, if produced indefinitely ...",[13] thus avoiding the implication that Euclid was comfortable with the notion of infinity. Finally, it has been maintained that a reflection on infinity, far from eliciting a "horror of the infinite", underlay all of early Greek philosophy and that Aristotle's "potential infinity" is an aberration from the general trend of this period.[14]

Zeno was not attempting to make a point about infinity. As a member of the Eleatics school which regarded motion as an illusion, he saw it as a mistake to suppose that Achilles could run at all. Subsequent thinkers, finding this solution unacceptable, struggled for over two millennia to find other weaknesses in the argument.

Dedekind's approach was essentially to adopt the idea of one-to-one correspondence as a standard for comparing the size of sets, and to reject the view of Galileo (derived from Euclid) that the whole cannot be the same size as the part. (However, see Galileo's paradox where Galileo concludes that positive integers cannot be compared to the subset of positive square integers since both are infinite sets.) An infinite set can simply be defined as one having the same size as at least one of its proper parts; this notion of infinity is called Dedekind infinite. The diagram to the right gives an example: viewing lines as infinite sets of points, the left half of the lower blue line can be mapped in a one-to-one manner (green correspondences) to the higher blue line, and, in turn, to the whole lower blue line (red correspondences); therefore the whole lower blue line and its left half have the same cardinality, i.e. "size".[citation needed]

Cantor defined two kinds of infinite numbers: ordinal numbers and cardinal numbers. Ordinal numbers characterize well-ordered sets, or counting carried on to any stopping point, including points after an infinite number have already been counted. Generalizing finite and (ordinary) infinite sequences which are maps from the positive integers leads to mappings from ordinal numbers to transfinite sequences. Cardinal numbers define the size of sets, meaning how many members they contain, and can be standardized by choosing the first ordinal number of a certain size to represent the cardinal number of that size. The smallest ordinal infinity is that of the positive integers, and any set which has the cardinality of the integers is countably infinite. If a set is too large to be put in one-to-one correspondence with the positive integers, it is called uncountable. Cantor's views prevailed and modern mathematics accepts actual infinity as part of a consistent and coherent theory.[38][39][page needed] Certain extended number systems, such as the hyperreal numbers, incorporate the ordinary (finite) numbers and infinite numbers of different sizes.[citation needed]

Until the end of the 19th century, infinity was rarely discussed in geometry, except in the context of processes that could be continued without any limit. For example, a line was what is now called a line segment, with the proviso that one can extend it as far as one wants; but extending it infinitely was out of the question. Similarly, a line was usually not considered to be composed of infinitely many points, but was a location where a point may be placed. Even if there are infinitely many possible positions, only a finite number of points could be placed on a line. A witness of this is the expression "the locus of a point that satisfies some property" (singular), where modern mathematicians would generally say "the set of the points that have the property" (plural).

One of the rare exceptions of a mathematical concept involving actual infinity was projective geometry, where points at infinity are added to the Euclidean space for modeling the perspective effect that shows parallel lines intersecting "at infinity". Mathematically, points at infinity have the advantage of allowing one to not consider some special cases. For example, in a projective plane, two distinct lines intersect in exactly one point, whereas without points at infinity, there are no intersection points for parallel lines. So, parallel and non-parallel lines must be studied separately in classical geometry, while they need not to be distinguished in projective geometry.

Leopold Kronecker was skeptical of the notion of infinity and how his fellow mathematicians were using it in the 1870s and 1880s. This skepticism was developed in the philosophy of mathematics called finitism, an extreme form of mathematical philosophy in the general philosophical and mathematical schools of constructivism and intuitionism.[43]

Cosmologists have long sought to discover whether infinity exists in our physical universe: Are there an infinite number of stars? Does the universe have infinite volume? Does space "go on forever"? This is still an open question of cosmology. The question of being infinite is logically separate from the question of having boundaries. The two-dimensional surface of the Earth, for example, is finite, yet has no edge. By travelling in a straight line with respect to the Earth's curvature, one will eventually return to the exact spot one started from. The universe, at least in principle, might have a similar topology. If so, one might eventually return to one's starting point after travelling in a straight line through the universe for long enough.[47]

The concept of infinity also extends to the multiverse hypothesis, which, when explained by astrophysicists such as Michio Kaku, posits that there are an infinite number and variety of universes.[52] Also, cyclic models posit an infinite amount of Big Bangs, resulting in an infinite variety of universes after each Big Bang event in an infinite cycle.[53]

The IEEE floating-point standard (IEEE 754) specifies a positive and a negative infinity value (and also indefinite values). These are defined as the result of arithmetic overflow, division by zero, and other exceptional operations.[55]

Some programming languages, such as Java[56] and J,[57] allow the programmer an explicit access to the positive and negative infinity values as language constants. These can be used as greatest and least elements, as they compare (respectively) greater than or less than all other values. They have uses as sentinel values in algorithms involving sorting, searching, or windowing.[citation needed]

In languages that do not have greatest and least elements, but do allow overloading of relational operators, it is possible for a programmer to create the greatest and least elements. In languages that do not provide explicit access to such values from the initial state of the program, but do implement the floating-point data type, the infinity values may still be accessible and usable as the result of certain operations.[citation needed]

Perspective artwork uses the concept of vanishing points, roughly corresponding to mathematical points at infinity, located at an infinite distance from the observer. This allows artists to create paintings that realistically render space, distances, and forms.[58] Artist M.C. Escher is specifically known for employing the concept of infinity in his work in this and other ways.[citation needed]

Cognitive scientist George Lakoff considers the concept of infinity in mathematics and the sciences as a metaphor. This perspective is based on the basic metaphor of infinity (BMI), defined as the ever-increasing sequence .[61] 041b061a72